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Abstract

The Electrical Impedance Tomography (EIT) utilizes CPU time-consuming
minimization technigues for imaging an object. In thizs paper we present
a computationally fast method for the forward /inverse EIT problem based
on an asymptotic selution to Laplace’s equation for an imaped domsain with
a small size inclusion situated inside of it. In this sclution the principal
term is represented by a dipole term. The computational time required by
an EIT problem using the Dipole Appredmation (DA) can be two orders
of magnitude smaller than when wsing regular BEM. Resulis of numerical
tosts show a substantial nprovement in the speed of the inverse problem
solution when using the DA BEM approach.

1 Introduction

Imaging of the tissues inside the body as a diagnostic tool plays a vital role
in modern medicine, and various technologies have been developed for this
purpose including X-ray imaging, computerized tomography, gamins-ray
densitometry, magnetic resonance imaging, and ultrasound techniques[1).
These techniques attempt to determine the internal structure of tissue by
externally exposing the =zubject to some disturbance or excitation and by
measuring the affected physical quantity. In Electrical Impedance Tomog-
raphy (EIT) the distribution of conductivity inside an object is sought by
applying specified currents (or voltages) at some parts of the object surface,
and performing measurements of the voltage (or current) at other parts.
The equations for the electric field then provide a relatiomship between the



conductivity distribution inside the object and the measured voltages and
currents. Different types of materials have different conductivities, and the
availability of a conductivity map provides an image of the material distri-
bution. Schematic of the EIT procedure can be found elsewhere|1-4/.
Since the mid 1980s ETT has seen intense research efforts to develop
it into a usefnl technigque for medical, two-phase flows, or other imaging.
However, despite these efforts the technique still remains restricted to the
laboratory, and to two-dimensional applications. The key reasom is that
computationally the problem of obtaining images from measurements re-
quires extensive resources in computer memory and time. In the previous
studies conducted at DyNAFLOW, TN, we have developed an efficient algo-
rithm hased on the Boundary Flement Method[2-4]. The innovation in the
present work is the use of asvmptotic expansion based approximation, the
MNipole Appracimation (DA), to speed up the solution of the EIT problem.

2 Boundary Element Method

Consider a region of constant electrical conductivity oy bounded by a bound-
ary surface §. An electric current T is injected into this region through a
pair of electrodes denoted by the syvmbols £; (source) and e; (sink), Tespec-
tively. This is repeated using N combinations of electrodes. The injected
electric current excites the electric potential, ¢% satisfying the Laplace’s
equation and the following boundary conditions:
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Equation {eqn 1) can be reformmulated via Green’s identity:
o (x) = j n- [p9(¥IVEExY) - Glx, VIV (y)]ds.  (3)
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where a7 is the angle in 2D (solid angle in 3D) under which the point x
scos the rest of the domain, and & i= the Green's function. The surface
integrals can be performed by suitably discretizing the boundaries. Tn 2D
we accomplish this by fitting eubic splines through lmown points on the
boundary., Following a eollocation approach, by selecting the points x to be
the nodes on 8, 2 linear system of equations of the form
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results, Here A and B are matrices corresponding to the discretization and
intesration with the Green’s function and its derivative. On accounting for
boundary conditions at the collocation points, one obtains a closed svstem
of equations, which leads to ©¥ and &% /8n at ihe boundary.
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3 Dipole Approximation

Consider an important practical case where L small objects of zero condue-
tivity are located inside a domain of comstant conductivity. Such case is
typical of applications where small bubbles are situated in & How or small
size cracks are present in a domain. We decompose the potential ¢ into

o =8 +9¥, ij=1,..N, i#j (3)

where @ is the undisturbed potential which can be found by solving the
problem (eqn 1) in the domain [ in the sbsence of objects and 3 is the
inclusion induced potential. ¢ satisfies the samne equation and boundary
conditions at the outer boundary of the domain as ®F plus conditions at
the boundaries 2;,...,5p of the embedded small objects:
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Subtracting the equations for & from those for ¢ we find that the
induced potential, €%, can be obtained by solving the following problem:

854 At .
=y =a _ R G
an et [}'ﬂ- KEHm

WE Ep

V89 =0,

T exploit the fact that in many cases inclusions are small compared o
the full domain we can use the method of matched asymptotic expansions[5]
for solution of Problem (eqn 7). U7 =V®; appears as a constant over the
small inclusion when considering the domain scale. In the inner problem,
at the scale of the inclusion we can determine &% from
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where v, = |rm| is the distance measured from the center of the mth

inclusion and (¥ is a matching constant obtained from matching the inner
solution with the outer solution:
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This problem is classical and corresponds to the velocity potential gen-

erated by a body moving with welocity Up in an ioviscid liguid. For a

body of constant volume the principal terms of the asvmptotic expansion
AL T, —+00 ATE
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Figure 1: a) The electrie potentials computed using the dipole approsd-
mation (solid line) and the BEM (dashed line). b) Dependence of the r.m.s.
difference between these potential on the relative size of the imaged object
(eylinder).

D | Y %ﬁ ~O0(r;%), in the 3D case,  (10)

Ty
'+

ij
i, MArm
o+ T

m

P +(rz2), in the 2D case, (11

T —* TG

where MY is the dipole moment, depending on the body shape and ori-
entation with respect to Up. For symmetrical bodies [sphere and circle of
radins R} we have the following well-known expressions

MI = %RfmU?, in the 3D case, (12)
M2 = RIUY, inthe 2D case. (13)

In the case of multiple bodies the principal terms become

L i
(q':i:l = £ Z El—;’%-\-l—--"}- + ..., in the N-dimensional case.  [14)
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The outer solution has dipole singularities at the nelusion locations,
X = X In other words it satisfies the following Poisson equation:
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Solution of this problem can be found wsing Green's identity:
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This equation clearly shows that the outer solution matches with the
inner solution, (eqn 14) and (eqn 9).

4 Implementation of the DA

In this section we explain the implementation of the dipole algorithm and
describe some computational results. To compute the dipole moment, M |
one needs to evaluate the gradient of the undisturbed potential, Ta"'i*ff, at
the location of the object. This can be accomplished by computing the
potential at a set of pouints inside the computational domain with the help
of Green's identity and by cubic spline-fit to the data. The spline fit involves
computation of the second denvatives of the dats while the first derivatives
are evaluated by linear interpolation of the second ones[6]. Once the dipole
moment has been computed, the induced potential is evaluated by solving
a linear set of equations which are written at the collocation points. These
equations result from discretization of (eqn 16) and have the form of {eqn
4). The resulting matrix B is singular; thus the solution to the eguation is
non-umique. We overcome this difficulty by the following wav: one of the
collocation points is assumed to be ‘grounded’, which removes the ambiguity
of the potential.

Figure la illustrates an example of the computation of the distribution
of the induced potential over the various node. 30 nodes were arranged in a
clockwise direction; the node number fifteen was ‘grounded’. The com-
puted potential almost lies on top of the exact potential, ) . These
plots correspond o the current “sink’ located at node % & , and current
‘source’ at node % 23. The differcnce in potentials are largest at the nodes
situated closer to the cavity center. These calculations were done for a
circular cavity with coordinates (7, —3) and radius, B = 3, located in-
gide a circle with radius, B, = 30, and centered at (0.0). We rcpeated
the calculations for the same location of cavity, but with different radii.
Figurc lb depicts the rans.  devietion of the induced electrical poten-
tial versus the relative radii of the cavity, RB/H;. At small walues of the
relative radii the error scales as the radius squared, In accordance with
(eqn 10). As the size of the cavity is increased, the value of the erzor
increases and, at R/R, = (.25 the rclative orrar is about one percent.
Therefore, the dipole approxmation is a ‘good’ one for objects with rel-
ative radii, say, less than one tenth of the domain characteristic length
while for larger objects the accuracy of the dipole approxdmation suffers.
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Figure 2: Reconstruction of the position and size of a single (a) and two
(b} inclusions using the dipole method. The inftial gness is shown by the
stars, while the reconstructed and correct Images are plotted by the solid
and dashed lines, respectively.

5 Inverse Problem

To solve an inverse EIT problem one needs to apply a concept of minimiza-
tion. We thus introduce an objective funetion:
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where p = {;t}l,pg, .....PN:I] is the parametrization vector, N, 15 the mumnber
of parameters, and ¢} are I/} are the computed and measured voltages at
the kth electrode corresponding to the ith and jth excitation electrodes.

Parametrization of a conductivity distribution in a given domain can
be made by many ways. For example an inclusion of & material of a differenc
conductivity than the host medium in a 2D configuration can be represented
by N, — 3 parameters, ag. of an expansion in addition to 3 parameters for
the center position and the reference angle, 8y:

Np—3
r(f—fo)= 3 axPe(cos(d— o)), (18)

k=1

where r is the distance from a selected point (zg. yo) nside the body o the
boundary, # is the polar angle of the poiut on Lhe body, and Py are the
Legendre polynomials, The space of parameters consists of xp. yp, 6y and
the N, — 3 coefficients ..



 Hulative EME Zeror TS CFU Time Felative FMS Brror ¥5 CPU Time
10 e —T — Ll —— =

Frear

We & I0 30 40 =C B0 73 80 50 10D ) T000 T000 i) Fis
CFU Time (zecl CPU Time [=ecl

Figure 3: Dependence of the rm.s. error between correct and recon-
structed solution on the CPU time (3GT Indige 2). The forward problem
solver is based on the DA (a). BEM (the upper curve b), and the combina-
tion of the DA and the BEM (the lower curve b).

The inverse problem solver based on the DA is very efficient because
the BEM calculation is performed only omce  during the first call. The
computation of the interpolation coefficients to determine the gradient of
the undisturbed field i3 time consuming but also is performed only once,
Moreover, the interpolation coofficients and the LI decomposed matrix B
are computed once for the preseribed geometry and are stored for subsequent
steps.

To test the feasibility of the dipole alzerithm we emploved Powell's
algorithm[6]. By minimizing the objective function with respect to p, we
are able to reconstruct the location and the size of the objects. An example
of reconstruction of the position and size of a single ¢vlindrical inclusion with
zero conductivity is shown in the left Figure 2. The location of the center of
the cavity and its radius are recovered fast with an accuracy of about one
percent. The right Figure 2 shows ancther example were we reconstructed
the shape of two cavities. The CPU time nesded to minimive the objective
function iz shown in Figure 3a. These calculations were performed on an
SGI Indigo IT workstation. At the computational time of about fifty seconds
Powell's alporithm reached a local minimum of the objective function and
the rans. error leveled off for the initial guess nsed. We would like to
emphasize that the dipole method is an approximadion. Therefore, the
r.m.s. error does not converge to zero as it is expected to in the case of the
application of minimization routines using the BEM[3.4].

6 Coupling of the Dipole and the BEM Codes

To reduce the total CPT time one can employ the dipole algorithm to obtain
an initial guess for the BEM, then continue with the more accurate BEM.
Figure 3b shows a comparison of the CPU time required by the Powell’s
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Figure 4: a) Shape reconstruction of two objects shown by the stars.
The initial guess is shown by the circled lines. The solutions obtained us-
ing the DA and BEM methods are represented by the solid and dotted
lines, respectively. The dashed lines illustrate the solution obtained using
the combination of the DA and the BEM. The lower curve (b} shows the
convergence steps for the later case. The upper curve (b) corresponds to
reconstruction based on the BEM.

algorithm using BEM during the full computation and that starting with
the aid of the DA and eontinued using the BEM[3,4]. One should notice that
the combination of the two approaches allows to reduce the computational
time by about ffty percent.

Figure 4a shows a further attempt at deducing the shape of two in-
clusions with the aid of the Powell minimization using the DA and the
BEM[3.4].

The later was started with the same guess to provide an initial guess
for the BEM. In the BEM implementation the shape of each cavity was
approdmated by applving seven Legendre polynomials. The comparison of
the reguired CPU time for these two cases again shows significant reduction
of the computational time (Figure 4b).

These examples demonsirate the capability of the dipole method to
obtain the initial guess required by the algorithm based on the BEM. This
initial guess is relatively close to the correct solution and results in CPU
time reduction. Further improvements may be achieved if one introduces
for non-spherical bodies quadrupole or higher order approximalions to the
solution.

7 Influence of Noise

The examples shown so far assumed experimental data with no errors. How-
ever, experimental measurements always have some component of errors.
An important question is to what extent minimization algorithms using the
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Figure j: Reconstruction of a circle shown by stars using the dipole
method (the left figure) and the BEM based Powell algorichm. The sclid,
dotted, and dash-dotied lines show the solution corresponding to experimen-
tal duta truncated Lo three, two, and one digits. For the case represented
on the right fpure the solution converged to a circle with zero radius (it is
nol shown) when we kept only one digit.

EBEM and the dipole approxdmation are sensitive to errors in the experimen-
tal measurements. To answer this question we made a series of simulations
where experimental noise was modeled by using input data with different
degrees of accuracy. This degree of accuracy was sclocted by kecping only
a finite number of digits in the representation of the cxperimental data and
disregarding the rest. This model of noise reflects the finite accuracy of
mstruments in recording experimental measurements. We report fitst data
of simulations done with the aid of the dipole aleorithm, and then we re-
port data rclated to the BEM and show the influence of this noise on the
reconstructed solutions.

Figure 3 left lusirates an example of the converged and correct solu-
tions in the case of one cylindrical inclusicn nside a cylindriesl container,
Here we plotted the shape of the melusion only, The solid, dotbed, and
dashed-dotted lines show the solutions obtained by keeping only Lhree, two,
and one sipnificant digits in Lhe numerical representation of the experimen-
tal data, while the stars show ihe exact solution. As the accuracy of the
experimental daia worsens, the reconstructed shape deviates more from the
correct, one, These converged solutions were then used as initial data for
ihe BEM hased code]3.4] to continue the convergence procedure. The dipole
approximation to the solution neglects higher order terms in the representa-
tion of the true solution. Figure 5 right illustrates the converged and correct
solutions obtained with the aid of the BEM based algorithm. A comparison
of the results of computations done with the help of the DA and the BEM
based algorithms shows that the BEM is more accurate if we keep three
and more digits in the representation of experimental data while, on the



comtrary, the DA performs better if we keep two or less digits. For one digit
data representation, the BEM algorithm predicts a cavity which contracts
to a point with zero radius while, the dipole algorithm still gives a reason-
able solution. Therefore, to recover the size and the shape of cavities with
the aid of the BEM basad method the measurements error should be less
than one percent. If the measured data are less accurate the dipole method
is much superior.

8 Conclusions

In the work described here we implemented the DA for EIT problem. This
drastically reduces the required computational time and allows Implenern-
tation of efficient minimization strategies. We also studied the influence of
noise on the performance of the algorithm. Results showed stability of the
reconstruction methods using BEM up to noise levels of 1% and stability of
the dipole algorithm up to noise levels of 10%,. This characterizes the dipole
method and its coupling as robust and practical.
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